Solution of Differential Equations

Ching-Han Chen I-Shou University 2006-05-16

Differential Equation Examples

y' = f(x, y)	Initial Condition	Solution
y' = 2x	y(2) = 0	$y = x^2 - 4$
$y' = 3x^2 + 6x - 9$	y(-4.5050397) = 0	$y = x^3 + 3x^2 - 9x - 10$
$y' = 6x^2 - 20x + 11$	y(0) = -5	$y = 2x^3 - 10x^2 + 11x - 5$
$y' = 2xe^{2x} + y$	y(0) = 1	$y = 3e^x - 2e^{2x} + 2xe^{2x}$
y' = 8x - 2y + 8	y(0) = -1	$y = 4x - 3e^{-2x} + 2$
$y' = xe^{-2x} - 2y$	y(0) = -0.5	$y = \frac{x^2 e^{-2x} - e^{-2x}}{2}$

Analytical Solution and Numerical Solution of Differential Equation

Differential equation : y' = 2x with initial condition y(2) = 0Analytical solution : $y = x^2 - 4$

Euler's Method

Algorithm

```
void Euler(float h)
{
    y += h*function(x, y);
    x += h;
}
```

Exercise for Euler's Algorithm

Differential equation: $y'=f(x,y) = 6x^2 - 20x + 11$ Initial condition: y(0.0) = -5.0Analytical solution: $y = 2x^3 - 10x^2 + 11x - 5$ True value: y(6.0) = 133.0

Exercise for Euler's Algorithm

Fourth-Order Runge-Kuta Method

For y' = f(x, y)

$$k_1 = f(x_i, y_i)$$

 $k_2 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1\right)$
 $k_3 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_2\right)$
 $k_4 = f(x_i + h, y_i + hk_3)$
 $y_{i+1} = y_i + \left(\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}\right)h$

Runge-Kuta Method

Ex 1

Given the differential equation $y'=2xe^{2x}+y$ with y(0)=1, to find the solution for x=1,2,3,4,5

- (1)Using Euler's method;
- (2) Using Runge-Kuta method;

(3) Using the analytical solution $y = 3e^{x}-2e^{2x}+2xe^{2x}$.

(4)Plot above 3 curves in Excel